关于 WSL docker cuda,安装深度学习 Python 环境

发布于 2021-05-22 09:42:31

研究生找了个搞数据库的导师,结果还是躲不过这玩意。。现在啥都得结合深度学习。。。

现在有一个项目需要我跑起来,然后我今天搞了一天的环境,问题有点多。

一开始不清楚就直接装了个 python3.9,然后有个 requirements.txt ,安装包的时候出错,查了一下发现里面用到了 tensorflow1,只能用 3.6,然而我已经不知道要怎么把 python3.9 换成 3.6 (试了几种方法。。。反而把环境搞乱了也没成功)

所以我打算用 docker,反正在本地只要跑跑 demo 就行,所以我写了一个 dockerfile,基于 python3.6 的镜像,把 requirements.txt 拷贝进去再安装,但是还是出现了很多错误。。

其中就有一些红色的也不知道错误还是警告

UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at  /pytorch/c10/cuda/CUDAFunctions.cpp:100.)

这我才想起来好像深度学习得用到一种叫 cuda 的东西,似乎就是这里出的问题。

所以我的问题是,这个 cuda 的环境,我是应该把他装在 docker 容器里吗?还是装在宿主机上,而且我用的是 windows 的 WSL,如果是装在容器里,我应该是找个 linux 镜像,然后再按照系统找到对应的 cuda 版本装上,然后再装上 python 等等。。。。感觉更麻烦了。。。。

所以我还想问针对我配置环境(装个 python3.6 装 cuda 装一些 python 包。。。)这个问题,有没有最简单的方法可以搞定。。。实在是太混乱了

查看更多

关注者
0
被浏览
542
4 个回答
ganzi
ganzi 2021-05-22
这家伙很懒,什么也没写!

今天恰好在琢磨这个,直接用 conda 新建一个环境啊,在环境里下载自己想要的版本,cuda 也可以选择版本这里去找(一般是 8-11 选吧) https://anaconda.org/search?q=cuda,不会影响本机的。

实验室的机子太多人用了,我就用了 Google Colab,但是这个上面也是坑。如果你不用 conda 的话,用 Google Colab 去搭建学习环境还是可以的。我一般就是在上面跑 GNN 。

enmu123
enmu123 2021-05-22
这家伙很懒,什么也没写!

我推荐直接装个 Ubuntu 来操作,wsl 还可能遇上各种坑。
Python 版本你可以用 pyenv 来进行管理。

ipwx
ipwx 2021-05-22
这家伙很懒,什么也没写!
  1. Windows 别想了。本体用 TensorFlow / PyTorch 可能会有各种奇怪的问题,因为你这真的是小众平台很少有搞学术这么做的,碰到问题不好解决。而 WSL/WSL2/虚拟机都是不可能用 CUDA 的,无解。
  2. Linux 下用 Docker 启动 CUDA + TensorFlow 是可能的。我在实验室这么干了好几年了,不然我们实验室那么多人用服务器,每个人环境都不同,我得管死。
Muniesa
Muniesa 2021-05-22
这家伙很懒,什么也没写!

Windows 的 docker 用不了 CUDA,wsl2 的 CUDA 支持我记得还在内测,如果 Linux 环境是必需的那就只能物理机装上 Linux 系统,如果不是,用 conda 装 Python 对应版本和 CUDA 是最简单的。

撰写答案

请登录后再发布答案,点击登录

发布
问题

分享
好友

手机
浏览

扫码手机浏览