Warm tip: This article is reproduced from stackoverflow.com, please click
matplotlib python subplot

Merge matplotlib subplots with shared x-axis

发布于 2020-05-04 07:00:54

I have two graphs to where both have the same x-axis, but with different y-axis scalings.

The plot with regular axes is the data with a trend line depicting a decay while the y semi-log scaling depicts the accuracy of the fit.

fig1 = plt.figure(figsize=(15,6))
ax1 = fig1.add_subplot(111)

# Plot of the decay model 
ax1.plot(FreqTime1,DecayCount1, '.', color='mediumaquamarine')

# Plot of the optimized fit
ax1.plot(x1, y1M, '-k', label='Fitting Function: $f(t) = %.3f e^{%.3f\t} \
         %+.3f$' % (aR1,kR1,bR1))

ax1.set_xlabel('Time (sec)')
ax1.set_ylabel('Count')
ax1.set_title('Run 1 of Cesium-137 Decay')

# Allows me to change scales
# ax1.set_yscale('log')
ax1.legend(bbox_to_anchor=(1.0, 1.0), prop={'size':15}, fancybox=True, shadow=True)

enter image description here enter image description here

Now, i'm trying to figure out to implement both close together like the examples supplied by this link http://matplotlib.org/examples/pylab_examples/subplots_demo.html

In particular, this one

enter image description here

When looking at the code for the example, i'm a bit confused on how to implant 3 things:

1) Scaling the axes differently

2) Keeping the figure size the same for the exponential decay graph but having a the line graph have a smaller y size and same x size.

For example:

enter image description here

3) Keeping the label of the function to appear in just only the decay graph.

Any help would be most appreciated.

Questioner
iron2man
Viewed
8
Serenity 2016-06-10 10:05

Look at the code and comments in it:

import matplotlib.pyplot as plt
import numpy as np
from matplotlib import gridspec

# Simple data to display in various forms
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)

fig = plt.figure()
# set height ratios for sublots
gs = gridspec.GridSpec(2, 1, height_ratios=[2, 1]) 

# the fisrt subplot
ax0 = plt.subplot(gs[0])
# log scale for axis Y of the first subplot
ax0.set_yscale("log")
line0, = ax0.plot(x, y, color='r')

#the second subplot
# shared axis X
ax1 = plt.subplot(gs[1], sharex = ax0)
line1, = ax1.plot(x, y, color='b', linestyle='--')
plt.setp(ax0.get_xticklabels(), visible=False)
# remove last tick label for the second subplot
yticks = ax1.yaxis.get_major_ticks()
yticks[-1].label1.set_visible(False)

# put lened on first subplot
ax0.legend((line0, line1), ('red line', 'blue line'), loc='lower left')

# remove vertical gap between subplots
plt.subplots_adjust(hspace=.0)
plt.show()

enter image description here